Тема 5 Линейные регрессионные модели с переменной структурой (фиктивные переменные)

При изучении социально-экономических процессов и явлений может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровня, например, образование, пол, фактор сезонности. Качественные признаки могут существенно влиять на структуру линейных связей между переменными и приводить к скачкообразному изменению параметров регрессионной модели. В этом случае говорят об исследовании регрессионных моделей с переменной структурой или построении регрессионных моделей по неоднородным данным.

Оценить влияние значений количественных переменных и уровней качественных признаков с помощью одного уравнения регрессии можно путем введения фиктивных переменных.

В качестве фиктивных переменных обычно используются дихотомические (бинарные) переменные, которые принимают всего два значения: «0» и «1». Например, при исследовании зависимости заработной платы от уровня образования Z можно рассмотреть к-1 уровня: начальное образование, среднее и высшее. Обычно вводят (к-1) бинарную переменную. В нашем случае потребуется ввести две фиктивные переменные.

Тогда регрессионная модель запишется в виде:

Где

х1,…хт – экономические (количественные) переменные.

Наличие у работника начального образования будет отражено парой значений z1=0, z2=0.

Параметры при фиктивных переменных z1 и z2 представляют собой разность между средним уровнем результативного признака для соответствующей группы и базовой группы (в нашем примере это работники с начальным образованием).

При построении регрессионных моделей по неоднородным данным необходимо выяснить, действительно ли две выборки однородны в регрессионном смысле, можно ли объединить их в одну и рассматривать единую модель регрессии?

Для ответа на этот вопрос можно воспользоваться тестом Г.Чоу.

По каждой выборке строятся две линейные регрессионные модели:

Проверяемая нулевая гипотеза имеет вид – Н0: b`=b``; D(ε`)= D(ε``)=σ2

Если нулевая гипотеза верна, то две регрессионные модели можно объединить в одну объем n=n1+n2.



Согласно критерию Г.Чоу нулевая гипотеза Н0 отвергается на уровне значимости α, если статистика

Где - остаточные суммы квадратов соответственно для объединенной, первой и второй выборок, n=n1+n2.

 






Дата добавления: 2017-12-05; просмотров: 321;


Поделитесь с друзьями:

Вы узнали что-то новое, можете расказать об этом друзьям через соц. сети.

Поиск по сайту:

Введите нужный запрос и Знаток покажет, что у него есть.
Znatock.org - Знаток.Орг - 2017-2019 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.004 сек.