Упруго-пластический изгиб. Чистый упруго пластический изгиб.

 

Рассмотрим стержень, работающий в условиях чистого изгиба. Пусть поперечное сечение стержня имеет две оси симметрии и .

Будем считать, что материал одинаково работает как на растяжение, так и на сжатие и нам задан закон, связывающий напряжения с деформацией:

В основу решения положена гипотеза плоских сечений (см. лекция 6). или обозначим кривизну

Форма поперечного сечения балки задается шириной: где

вместо аргумента можно ввести безразмерную координату и рассматривать функцию .

Момент внутренних сил, действующих на элементарную площадку шириной и высотой (см.рис.) равняется:

Изгибающий момент в сечении (учитывая, что ось -ось симметрии):

Выражение (3) можно преобразовать, заменив переменную интегрирования на величину ей пропорциональную . Наибольшие деформации возникнут в точке наиболее удаленной от оси при ; тогда

Интеграл может быть найден при

простом законе и аналитически, а в более сложных

случаях численно.

Таким образом, по заданной кривизне балки мы можем найти величину изгибающего момента. Задаваясь различными значениями кривизны , мы можем с помощью (4) найти соответствующие им значения изгибающего момента и построить график зависимости от .

Имея этот график, можно по заданному моменту найти величину , затем деформации по формуле , а по деформациям из закона определить напряжения, возникающие в поперечном сечении балки при заданном моменте.

 

 






Дата добавления: 2018-02-08; просмотров: 291;


Поделитесь с друзьями:

Вы узнали что-то новое, можете расказать об этом друзьям через соц. сети.

Поиск по сайту:

Введите нужный запрос и Знаток покажет, что у него есть.
Znatock.org - Знаток.Орг - 2017-2019 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.004 сек.